GCSE Physical Education

Component 1

Part 1

Revision Booklet

The structure and functions of the:

- Skeletal system
- Muscular system
- Cardiovascular system
- Respiratory system

Topic Number	Description Pre Pos Revision revisi					
1.1.1	The functions of the skeleton applied to performance in physical activities and sports: • protection of vital organs • muscle attachment • joints for movement • platelets • red and white blood cell production • storage of calcium and phosphorus					
1.1.2	 Classification of bones: long (leverage) short (weight bearing) flat (protection, broad surface for muscle attachment) irregular (protection and muscle attachment) Applied to performance in physical activities and sports 					
1.1.3	Structure of the skeleton: cranium, clavicle, scapula, five regions of the vertebral column (cervical, thoracic, lumbar, sacrum, coccyx), ribs, sternum, humerus, radius, ulna, carpals, metacarpals, phalanges (in the hand), pelvis, femur, patella, tibia, fibula, tarsals, metatarsals, phalanges (in the foot)					
	Explain how they are applied to performance in physical activities and sports					
1.1.4	Classification of joints: pivot (neck - atlas and axis) hinge (elbow, knee and ankle) ball and socket (hip and shoulder) condyloid (wrist) 					
	Their impact on the range of possible movements					
1.1.5	Movement possibilities at joints dependant on joint classification: flexion, extension, adduction, abduction, rotation, circumduction, plantar-flexion, dorsi-flexion					
	Give examples of physical activity and sporting skills and techniques that utilise these movements in different sporting contexts					

1.1.6	The role of ligaments and tendons, and their relevance to participation in physical activity and sport			
Areas of Strength				
Areas to revise				

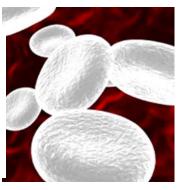
Functions of the skeleton

- protection of vital organs
- muscle attachment
- joints for movement
- platelets
- red and white blood cell production
- storage of calcium and phosphorus

The cranium **protects** the brain when heading the ball

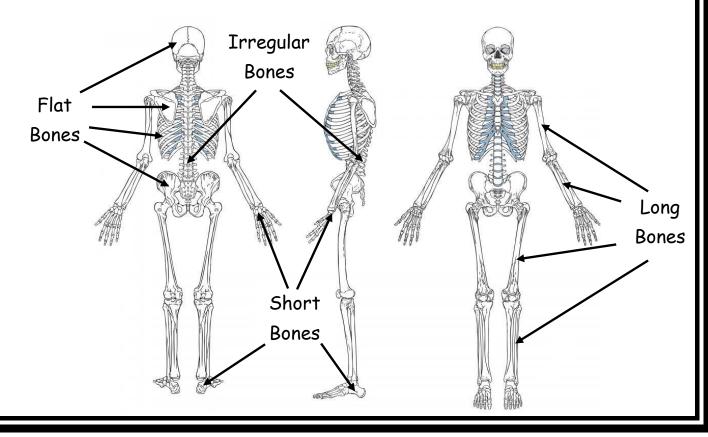
The ribs **protect** the vital organs such as the heart and lungs when getting tackled in rugby

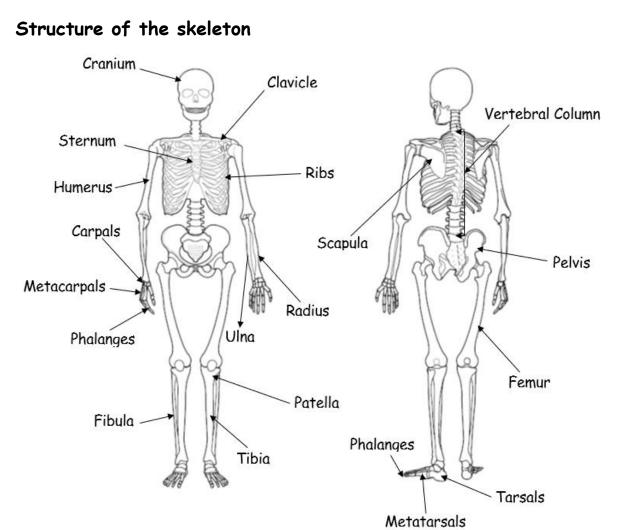
Bones provide anchors for **muscles to attach**. Tendons attach muscles to bones. Muscles pull on bones to create movement


Bones act as levers to create **movement**. The longer the levers the greater the force.

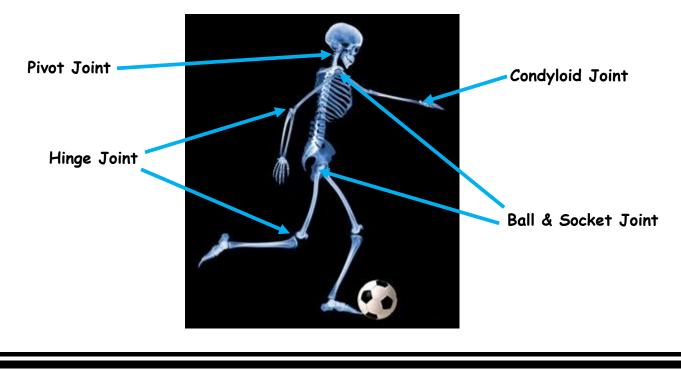
Platelets clot blood when we are cut to stop the bleeding

White blood cells fight infection so we are fit to take part in physical activity

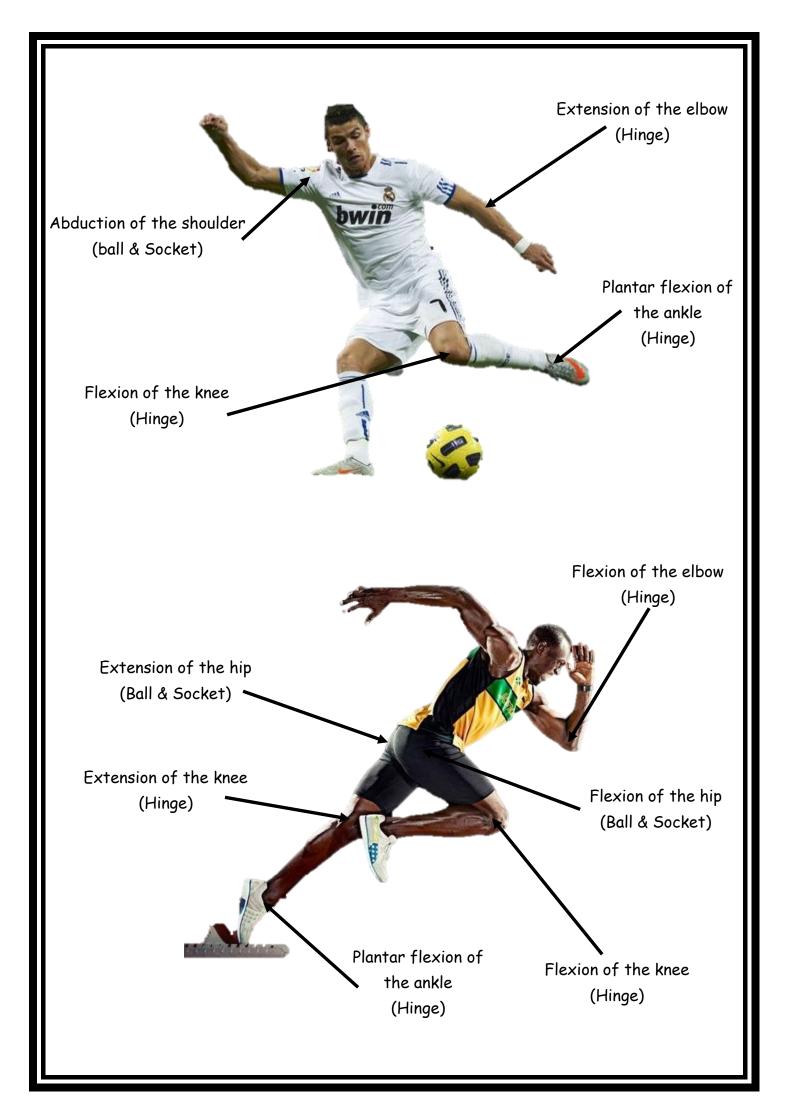

Red blood cells carry oxygen that is delivered to the working muscles during exercise


Calcium and Phosphorus is stored in the bones to keep them strong

Type of Bone	Examples	General function
Long	Humerous Ulna Phalanges Tibia Fibula	They are longer than they are wide. In sport they are vital to generate movement, speed and strength. They usually act as levers to enable the body to move.
Short	Tarsals Carpals	They are roughly the same size in length, width and thickness. In sport they are important to shock absorb the weight of the body when running, jumping and dancing etc Short bones are important for all weight bearing exercises
Flat	Ribs Stetrnum Patella Scapula Sternum	Flat bones usually protect organs or offer a good surface for muscles to attach to. Flat bones protect us in sporting situations, e.g. the ribs protect our internal organs when getting tackled in rugby. Muscles are needed for movement. The scapula has three different muscle groups attached to it.
Irregular	Vertebral Column: • Cervical • Thoracic • Lumbar • Sacrum • Coccyx	Irregular bones have odd shapes and perform a range of functions. Some have a special shape so they can protect something, others have a lot of attachment points for muscles. When playing sport the top two vertebrae allow us to nod and rotate the head, the vertebrae protects our back, the sacrum provides many attachment points for muscle attachment.



The vertebral column


	vical	Vertebrae	Description
	Vicui	Cervical	These are the smallest of the vertebrae. They form the neck (Axis & Atlas). They allow the head to move.
The	oracic	Thoracic	These are slightly bigger vertebrae and attach the ribs. They also attach various muscles to the back
Lun	nbar	Lumbar	These are the largest of the moveable vertebrae. They give us mobility in our lower back, they help support the weight of the vertebrae and also attach various muscles.
Sad	crum	Sacrum	These are vertebrae that have fused together. They work together with our hip bones. They also support the weight of the vertebrae.
Cod	ссух	Соссух	No function

Classification of joints

Type of joint	Where found in the skeleton	Bones involved
Hinge	Knee	Knee: Femur, Tibia,
	Elbow	Fibula, Patella Elbow : Humerus,
	Ankle	Radius, Ulna Ankle: Tibia, Fibula, Tarsals
Ball and socket	Shoulder	Shoulder: Scapula, Humerus, Clavicle
35	Нір	Hip: Pelvis, Femur
Pivot	Neck	Cervical vertebrae: Axis, Atlas
Condyloid	Wrist	Wrist: Ulna, Radius, Carpals

Movement possibilities at a joint					
Movement	Explanation	Examples			
Flexion	A bending movement that decreases the angle between body parts				
Extension	A straightening movement that increases the angle between body parts	Extension Hip joint			
Abduction	The movement of a bone or limb away from the midline of a joint				
Adduction	The movement of a bone or limb towards the midline of a joint	Abduction Adduction			
Plantar Flexion	Movement at the ankle joint that points the toes downwards	Dorsi Flexion			
Dorsi Flexion	Movement at the ankle joint that points the toes upwards	Plantar Flexion			
Rotation	A rotational movement around a joint or axis				
Circumduction	Is the combination of flexion, extension, abduction and adduction. (Circular motion)	Abduction Flexion Extension Adduction			

The role of ligaments and tendons

	Description	Benefit to sport
Ligaments View View	A ligament is made from tough elastic fibrous tissue. Its main function is to join bone to bone Not much blood flows through ligaments which means they heal more slowly from a sprain or tear. Warming up such as stretching will help prevent injury to ligaments.	Ligaments help stabilise joints. When kicking a ball in football the ligaments in the knee will help stabilise the joint. Strong ligaments can prevent injuries such as a dislocation
Tendons	Tendons are made from tough non-elastic fibrous tissue Tendons attach muscles to bones Training helps strengthen tendons. The more you use your tendons the stronger they will be. The tendons in your leg will be stronger than the tendons in your wrist	Without tendons movement would not be possible. Tendons attach muscles to bones so they can pull them when they contract Tendons help provide powerful movements such as kicking, jumping and kicking

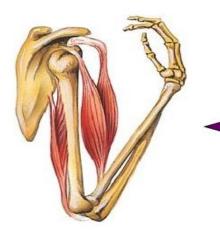
Topic Number	Description	Pre Revision	Post revision
1.1.7	 Classification and characteristics of muscle types: voluntary muscles of the skeletal system 		
	 involuntary muscles in blood vessels 		
	 cardiac muscle forming the heart 		
	Understand their roles when participating in physical activity and sport		
1.1.8	Location and role of the voluntary muscular		
	 system. Explain how they work with the skeleton to bring about specific movement during physical activity and sport, and the specific function of each muscle: Deltoid Biceps Triceps pectoralis major latissimus dorsi external obliques hip flexors gluteus maximus quadriceps hamstrings gastrocnemius tibialis anterior 		
1.1.9	 Antagonistic pairs of muscles (agonist and antagonist) to create opposing movement at joints to allow physical activities e.g. gastrocnemius and tibialis anterior acting at the ankle quadriceps and hamstrings acting at the knee biceps and triceps acting at the elbow hip flexors and gluteus maximus acting at the hip 		

1.1.10	Characteristics of fast and slow twitch muscle fibre types • type I • type IIa • type IIx Explain how these impact on their use in physical activities				
1.1.11	How the skeletal and muscular systems work together to allow participation in physical activity and sport				
Areas of	Areas of Strength				
Areas t	to revise				

Classification of muscle types

Classification of muscle	Description
Voluntary Muscles	 Voluntary muscle are the muscles around the skeleton We have control over them (consciously controlled) They attach to the skeleton by tendons
Involuntary Muscles	 Examples include: blood vessels, the stomach and intestines We do not have control over them (unconsciously controlled) They contract slowly and rhythmically
Cardiac Muscle	 Found in the walls of the heart When they contract they pump blood around the body We do not have control over them (unconsciously controlled)

Voluntary muscles



Muscle	Location	Function	Sporting Example
Deltoid	Triangular muscle on the uppermost part of the arm and the top of the shoulder	Move the upper arm in all directions from the shoulder	Serve in tennis Front Crawl Cricket Bowling
Pectoralis Major	Muscle covering the chest	Adducts the arm at the shoulder	Forehand drive in tennis Hand off in rugby Boxing hook
Latisimus Dorsi	Back muscle that extends from the lower spine to the upper arm.	Adducts and extends the arm at the shoulder	Butterfly stroke Pull ups Rowing stroke
Biceps	Front of Upper Arm	Elbow flexion (bending)	Boxing Uppercut Preparing to Throw a Dart or javelin
Triceps	Back of Upper Arm	Elbow extension (straightening)	Press-up Throwing a javelin Hand off in rugby Boxing Jab
External Obliques	Side of the abdomen	Pulls the chest downwards Flexion and rotation at spinal column	Crunches
Gluteus Maximus	Form the buttocks	Adducts and extends the hips pulling the leg backwards	Pull leg back before kicking a ball Leg position in the blocks 100m
Hip Flexors	Front of the hip and connect the leg, pelvis and abdomen	Flexes the hip, moves the hip upwards	Lifting knees when sprinting
Quadriceps	Front of Upper Leg	Knee extension (straightening)	Kicking a ball Jumping upwards on a lay-up shot
Hamstrings	Back of Upper Leg	Knee flexion (bending)	Bending knee before kicking a ball Bending knees before jumping
Gastrocnemius	Calf muscle, attached by the Achilles tendon	Plantar flexion, points the toes	Running Diving and gymnastics
Tibialis Anterior	Muscle that runs down the shin	Dorsi flexion, pulls toes upwards	Ski jumping Hurdling

Antagonistic Muscle Pairs

Muscles work together to provide movement of the joints When one muscle contract the other muscle relaxes When muscle work like this it is called antagonistic pairs The muscle that contracts is called the agonist The muscle that relaxes is called the antagonist

The biceps and triceps work together

When we bend the elbow (flexion) the biceps contract and the triceps relax

Agonist = Biceps Antagonist = Triceps When we straighten the elbow (extension) the triceps contract and the biceps relax

Agonist = Triceps Antagonist = Biceps

The quadriceps and hamstrings work together

When we bend the knee (flexion) the hamstrings contract and the quadriceps relax

Agonist = Hamstrings Antagonist = Quadriceps

When we straighten the elbow (extension) the triceps contract and the biceps relax

Agonist = Quadriceps Antagonist = Hamstrings

The gastrocnemius and tibialis anterior work together

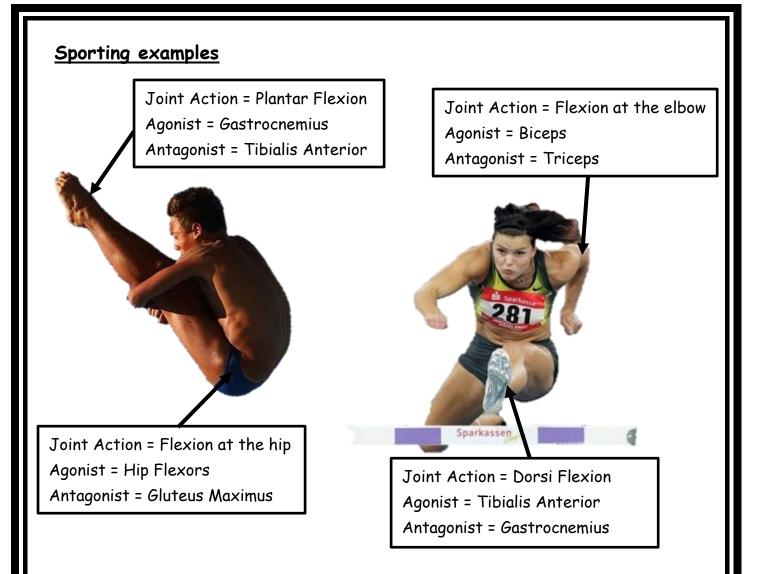
When we point our toes (plantar-flexion) the gastrocnemius contracts and the tibialis anterior relaxes

Agonist = Gastrocnemius Antagonist = Tibialis Anterior

When we point our toes upwards (dorsiflexion) the tibialis anterior contracts and the gastrocnemius relaxes

Agonist = Tibialis Anterior Antagonist = Gastrocnemius

The hip flexors and the gluteus maximus work together



When we extend our leg at the hip (move backwards) the gluteus maximus contracts and the hip flexors relaxes

Agonist = Gluteus Maximus Antagonist = Hip Flexors When we flex our leg at the hip (move forwards) the hip flexors contracts and the gluteus maximus relaxes

Agonist = Hip Flexors Antagonist = Gluteus maximus

Muscle fibre types

Muscle fibres are made up of different muscle fibres. Muscle fibres are either **Fast twitch** or **slow twitch**. They fall into three categories.

- Type I (Slow Twitch)
- Type IIa (Fast Twitch)
- Type IIx (Fast Twitch)

Different types of muscle fibres have different capabilities and are recruited depending on what task they are doing.

<u>Key Words</u>

Aerobic = is the process of producing energy from using oxygen

Anaerobic = is the process of producing energy without using oxygen

Myoglobin = found in the muscle, it helps transports oxygen from the blood to the muscles

Mitochondria = found in cells and produce energy during aerobic respiration

Capillaries = one cell thick blood vessels that allow the exchange of gases

Characteristics

Characteristic	Slow Twitch Type I	Fast Twitch Type IIa	Fast Twitch Type II×
Force of Contraction	Low	High	Very high
Speed of Contraction	Slow	Medium	Fast
Resistance to Fatigue	High	Moderate	Low
Aerobic or Anaerobic	Aerobic	Aerobic & Anaerobic	Anaerobic
Myoglobin	High	Medium	Low
Mitochondria	High	Medium	Low
Capillary Network	Good	Moderate	Low

Sporting Examples

- Mo Farah is an Olympic gold medallist in the 10,000m
- His event requires mainly type I muscle fibres
- These muscle fibres have a high resistance to fatigue so they can work for a long period of time without getting tired.
- The 10,000m is an aerobic event which means it uses oxygen, therefore the muscle fibres are high in both myoglobin, mitochondria they also have a good capillary network, all of these, assist getting oxygen to the working muscles and creating energy
- Usain Bolt is an Olympic gold medallist in the 100m
- His event requires mainly type IIx muscle fibres
- These muscle fibres contract with high force and very fast which makes them ideal for working at high intensity for a short period of time
- Because the event is anaerobic and doesn't use oxygen the muscle fibres are low in mitochondria and myoglobin and have a low capillary network

- Shaunae Miller is an Olympic gold medallist in the 400m
- His event requires mainly type IIa muscle fibres
- It isn't a sprint and it isn't an endurance event
- These fibres contract fast and have a medium force
- The event is both aerobic and anaerobic, because it is partly aerobic muscle fibres contain moderate amounts of myoglobin and mitochondria. It has a moderate capillary network

Cardiovascular System							
Topic Number	Description	Pre Revision	Post revision				
1.2.1	 Functions of the cardiovascular system Explain how they are applied to performance in physical activities: transport of oxygen, carbon dioxide and nutrients clotting of open wounds, regulation of body temperature 						
1.2.2	Structure of the cardiovascular system: Atria Ventricles Septum Tricuspid Bicuspid semi-lunar valves aorta vena cava pulmonary artery pulmonary vein Explain their role in maintaining blood circulation during performance in physical activity and sport						
1.2.3	Structure of arteries, capillaries and veins Explain their structure, function and importance during physical activity and sport in terms of blood pressure, oxygenated, deoxygenated blood and changes due to physical exercise						
1.2.4	Redistribution of blood flow Explain the mechanisms required (vasoconstriction, vasodilation) and the need for redistribution of blood flow (vascular shunting) during physical activities compared to when resting						
1.2.5	 Function and importance of blood Red white blood cells platelets plasma Explain their importance in physical activity and sport 						

Areas of Strength	
Areas to revise	

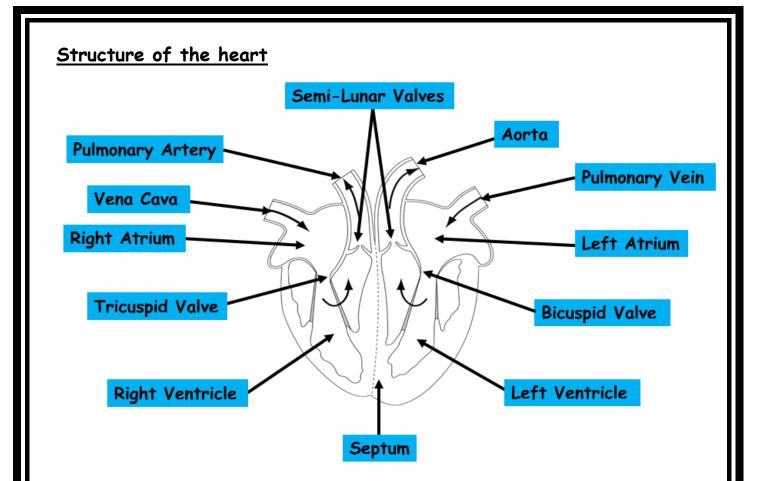
The cardiovascular system

The cardiovascular system consists of the heart, blood and blood vessels

- The heart pumps blood around the body
- Blood transports gasses, blood cells and nutrients
- Blood vessels carry the blood

Functions of the cardiovascular system

Function	Explanation		
Transport of nutrients	Nutrient we eat are broken down from the food we eat and transported to the body in the blood		
Transport of oxygen	The cardiovascular system transported oxygen around the body in the blood Oxygen is needed to provide energy to the working muscles during aerobic exercise		
Transport of carbon dioxide	Carbon dioxide is produced as a by-product during energy production. The cardiovascular system takes carbon dioxide away from the muscles to the lungs and exhaled.		
Clotting of open wounds	Blood contains blood cells called platelets. They are transported in the blood. They help to clot wounds by performing a plug to prevent blood loss		
Regulation of body temperature	Blood vessels cab help regulate body temperature. When we get hot blood vessels near the skin will get bigger (vasodilation) this will increase blood flow so heat can radiate from the skin When we get cold the blood vessels near the skin will get smaller (vasoconstriction) this will decrease blood flow so less heat is lost through radiation		


Sporting example

When exercising we need oxygen to be delivered to the working muscles for energy the oxygen is transported in the blood via the blood vessels

When taking part in exercise temperature increase the blood vessels near the skin will vasodilate to let heat radiate away from the skin

When we exercise carbondioxide is produced as a waste product. This needs to be removed. It is removed via the blood and blood vessels

Function	
Transports deoxygenated blood from the body to the right Atrium	
Top chamber of the heart that holds deoxygenated blood	
Stops the blood flowing back into the right atrium	
Bottom chamber that holds deoxygenated blood	
Stops the blood flowing back into the right ventricle	
Transports deoxygenated blood from the heart to the lungs	
Transports oxygenated blood from the lungs to the heart	
Top chamber of the heart that holds oxygenated blood	
Stops the blood flowing back into the left atrium	
Bottom chamber that holds oxygenated blood	
Stops the blood flowing back into the left ventricle	
Transports oxygenated blood to the rest of the body	
A wall that separates the left from the right side of the heart	

Structure of Blood Vessels

We need to know the structure and function of the three types of blood vessels. We also need to know how they are important in terms of oxygenated blood, deoxygenated blood, and their response to physical activity.

Blood Vessel	Structure	Importance During Physical Activity
Artery	 Thick muscular walls Thick elastic walls Small lumen (internal diameter) Carry blood at high pressure Cary blood away from the heart Usually carry oxygenated blood (except the pulmonary artery) 	When we exercise blood- pressure increases due to the demand for oxygen from the working muscles. Arteries take the blood to the working muscles. They dilate to allow more blood through
Vein	 Thin walls Large lumen (internal diameter) Carry blood at low pressure Contain valves Mainly carry deoxygenated blood (except the pulmonary vein) 	When we exercise aerobically the body produces waste products such as carbon dioxide. The blood in the veins take this to the lungs to be exhaled. The valves in the veins prevent the back flow of blood at low pressure
Capillary	 Very thin walls (one cell thick) Small lumen (internal diameter) Link smaller arteries with small veins Allow gaseous exchange 	When we exercise we need to deliver oxygen to the working muscles and remove the waste product, carbon dioxide. Capillaries allow the gaseous exchange at the lungs and the muscles

Redistribution of Blood Flow

Vascular Shunting: When we exercise blood is redistributed. The working muscles need more oxygen than other inactive areas of the body such as the stomach. Blood is diverted away from inactive areas to the working muscles. This is called vascular shunting.

Vasoconstriction

- Vasoconstriction means that the blood vessels are constricted to make them smaller
- When we exercise chemical changes signal the nervous system to **constrict** blood vessels to **inactive** areas reducing blood flow (for example the digestive system)

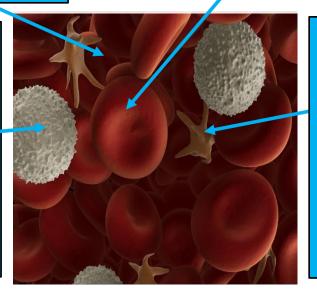
Vasodilation

- Vasodilation means that the blood vessels are dilated to make them bigger
- When we exercise chemical changes signal the nervous system to dilate blood vessels that supply active areas. This means more blood is delivered to working muscles, allowing them more oxygen

Function of Blood

Blood has four components that each play a role in physical activity

Plasma:


Plasma is the liquid part of the blood it acts as a transport system that transports the blood cells, platelets and nutrients to different parts of the body

Red Blood Cells:

Red blood cells carry oxygen and carbon dioxide. The oxygen binds with haemoglobin in the blood. It is then transported to the working muscles by the plasma The waste product carbon dioxide is also transported by the red blood cells, it is also carried by the plasma

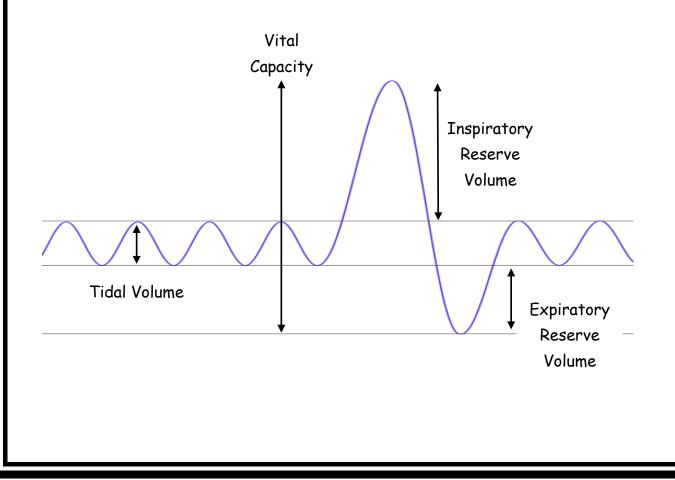
White Blood Cells:

White blood cells fight infection and disease. When playing sport they prevent infection if we get cut or scratched. They also keep us healthy so we are fit to train and take part in physical activity

Platelets:

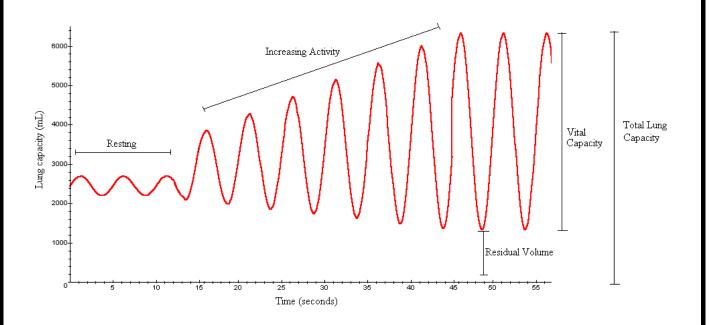
Platelets help prevent bleeding by clotting (sticking together) and forming a plug. This is important to allow performers such as boxers to stop the bleeding if they get a cut, allowing them to continue performing

Respiratory System					
Topic Number	Description	Pre Revision	Post revision		
1.2.6	 Composition of inhaled and exhaled air Nitrogen Carbon dioxide Oxygen Explain their impact on physical activity and sport on this composition 				
1.2.7	Vital capacity and tidal volume Explain the change in tidal volume due to physical activity and sport, and the reasons that make the change in tidal volume necessary				
1.2.8	Location of the main components of respiratory system: • Lungs • Bronchi • Bronchioles • Alveoli • diaphragm Explain their role in movement of oxygen and carbon dioxide into and out of the body				
1.2.9	Structure of alveoli to enable gas exchange and the process of gas exchange to meet the demands of varying intensities of exercise (aerobic and anaerobic)				
1.2.10					
Areas of	Strength				
Areas 1	o revise				


Composition of air

Inspired Air		Expired Air		
Nitrogen	78%	Nitrogen	78%	
Oxygen	21%	Oxygen	16%	
Carbon Dioxide	0.04%	Carbon Dioxide	4%	

The differences between inhaled and exhaled air


Gas	Explanation		
Oxygen	Oxygen levels go down in expired air Oxygen is used for energy production and for recovery, so there is less oxygen to breathe out		
Carbon Dioxide	Carbon dioxide increase in expired air Carbon dioxide is a waste product of energy production, so there is more carbon dioxide to breath out		
Nitrogen	Nitrogen levels stay the same The body does not use nitrogen for energy production and is not produced by the body.		

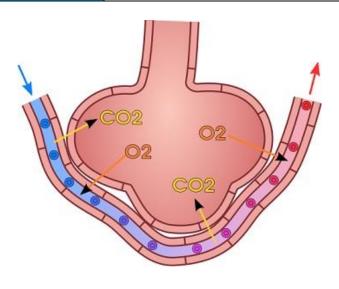
Lung Volumes

Lung volume	Explanation
Tidal Volume	The amount of air inspired (inhaled) or expired (exhaled) in a normal breath. Tidal volume at rest is 0.5 litres.
Vital capacity	The maximum amount of air the lungs can expire (breathe out) after the maximum inspiration (breathe in). Vital capacity is approximately 2.5 litres.
Expiratory Reserve Volume	The maximum volume of air that can be exhaled.
Inspiratory Reserve Volume	The maximum volume of air that can be inhaled.

Tidal volume during exercise

Changes to tidal volume during exercise

- When our body is at rest, breathing is low and shallow
- During exercise the demand for oxygen increases, oxygen is needed for energy production
- Breathing increases in depth and rate to meet the demand of oxygen
- Carbon dioxide is a by-product of aerobic energy production
- We need to remove the carbon dioxide and breathe it out
- To allow al of the above to happen tidal volume increases


<u>The respiratory sys</u>	<u>stem</u>
Alveoli	Lungs Bronchi Bronchioles
Structure	Explanation
Lungs	 There are two lungs (left and right) They allow air to be moved in and out of the body Air enters the body through inspiration Air leaves the body through expiration
Bronchi	 Air travels to each lung via a bronchus Bronchi is the term for both the left and right bronchus The passage of air gets smaller and smaller
Bronchioles	 The smaller airways that branch off the bronchi are called bronchioles Bronchioles branch out throughout the lungs and carry the air from the bronchi to the alveoli
Alveoli	 Alveoli are tiny air sacs They are attached to the bronchioles The exchange of oxygen and carbon dioxide occurs at the alveoli
Diaphragm	 The diaphragm is a domed sheet of muscle that helps up breathe in and out Inspiration - the diaphragm contracts and flattens to make more space in the chest so the lungs can expand to pull air in Expiration - the diaphragm relaxes and returns to a dome shape, making the chest cavity smaller. This helps force air out of the lungs

The alveoli and gas exchange

Gas exchange happens between

- Alveoli and the capillaries
- Capillaries and the muscle tissue

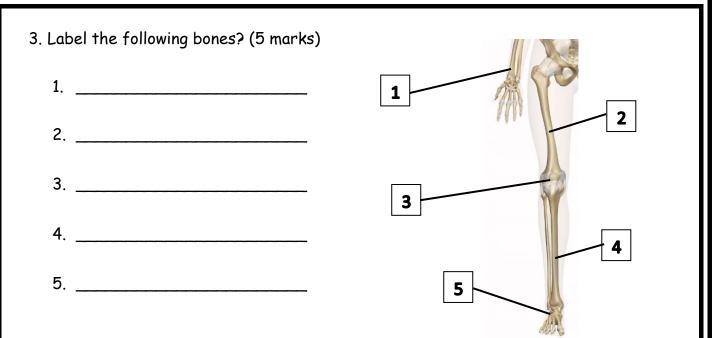
Structure of alveoli	 Very tiny air sacs Very thin walls Surrounded by capillaries 		
Gas exchange	Gases move from areas of high concentration to areas of low concentration. If there is more oxygen in the alveoli than the capillaries oxygen will move into the capillaries		
Gas exchange alveoli to capillaries	 Alveoli have a high pressure of oxygen Capillaries surrounding the alveoli = low pressure of oxygen Movement of oxygen from high pressure to low pressure through the thin walls of the capillaries Capillaries gain oxygen from the alveoli 		
Gas exchange Capillaries to alveoli	 The reverse happens with carbon dioxide Capillaries surrounding the alveoli have a high pressure of carbon dioxide Alveoli have a low pressure of carbon dioxide Movement of carbon dioxide from high tom low pressure Carbon dioxide moves from the blood (capillaries) into the alveoli to be breathed out 		

Apply your Knowledge

- Skeletal system
- Muscular system
- Cardiovascular system
- Respiratory system
- 1. Name three functions of the skeleton and explain how each function helps the performance of Anthony? (9 marks)

Function 1: _____ Helps performance: _____

Function 2: _____


Helps performance: _____

Function 3: _____

Helps performance: _____

2. Name a short bone and explain its importance in a game of basketball? (2 marks)

4. Draw a line matching the classification of joint and an example of where the joint can be found in the body (4 marks)

Classification of joint	Example in the body
Ball and socket	Knee
Condyloid	Shoulder
Hinge	Wrist
Pivot	Neck

5. Explain the role of ligaments during a hockey match, explain how they can affect performance? (5 marks)

6. Name an involuntary muscle found in the body and give two characteristics of this type of muscle? (3 marks)

7. Label the following muscles? (5 marks)	3
1	
2	4
3	
4	2 5
5	

8. Choose and antagonistic pair of muscles and explain how they contract when kicking a ball? (5 marks)

9. What type of muscle fibre is the most important to a marathon runner, explain your answer? (4 marks)

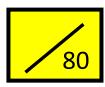
10. What three components that make up the cardiovascular system? (1 mark) 11. Explain how the body regulates temperature through vasoconstriction and vasodilation? (4 marks) 12. Label the heart? (4 mark) 13. Illustrate the difference between arteries and veins below? (5 marks)

14.	Using the	words below,	complete	the statements?	(2	marks)
-----	-----------	--------------	----------	-----------------	----	--------

	Unchanged	Equal	
	Greater	Lower	
When exerc resting	ising blood flow to stomach is _	than whe	n we are
When exerc we are resti	ising blood flow to the working ng	muscles is	_ than when
15. Explain v	vascular shunting? (2 marks)		
(3 marks			
17. The pie of A & B? (3	chart below represents the 3 m 2 marks)	nain gases in exhaled air, identi	ty the gases
		A	
18. Explain t air? (3 m	he difference in the percentage narks)	ge of carbon dioxide in inhaled	and exhaled
	Inhaled Carbon Dioxide	Exhaled Carbon Dioxide	
	0.04%	4%	

19.	When we	exercise tidal	volume	increases	explain	why it	increases?	(4 marks)
-----	---------	----------------	--------	-----------	---------	--------	------------	-----------

20. Draw and label the following components of the respiratory system? (5 marks)


.

- Lungs
- Bronchi
- Bronchioles
- Alveoli
- Diaphragm

21.	Explain how	gas exchanges	from the mus	cle tissue to	the alveoli	(4 marks)
-----	-------------	---------------	--------------	---------------	-------------	-----------

Self-Assessment

- You are now going to use your revision notes to mark your work
- Fill in any incorrect answers in Green pen
- Give yourself a score

Post *it*

Write a short post it note about your knowledge at this stage of component 1 and what you need to do to improve!